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Abstract Physical mechanism for the creation of solar spicules with three stages of their

life cycle is investigated. It is assumed that at stage-I, the density hump is formed locally

in the chromosphere in the presence of temperature gradients of electrons and ions along

the z-axis. The density structure is accelerated in the vertical direction due to the thermal

force Fth ∝ ∇n(x, y, t)×(∇Te+∇Ti). The magnitude of the upward acceleration depends

on the steepness of the temperature gradients ∇Tj where j = (e, i). The exact time-

dependent 2D analytical solution of two fluid plasma equations is presented assuming that

the exponentially decaying density structure is created in the xy plane and evolves in time

as a step function H(t) . The upward acceleration a produced in this density structure is

greater than the downward solar acceleration g⊙. The vertical plasma velocity turns out

to be the ramp function of time R(t) whereas the source term for the density follows the

delta function δ(t). In the transition region (TR), the temperature gradients are steeper

and itupward acceleration increases in magnitude g⊙ << a and density hump spends

lesser time here. This is stage-II of its life cycle. In stage-III, the density structure enters

the corona where the gradients of temperatures vanish and structure moves upward with

1

ar
X

iv
:2

30
7.

14
32

8v
1 

 [
as

tr
o-

ph
.S

R
] 

 2
6 

Ju
l 2

02
3

songyongliang


songyongliang




almost constant speed which is slowly reduced to zero due to negative solar gravitational

force because a ≃ −g⊙. The estimates of height H and life time τl of the spicule are in

agreement with the observed values.

Keywords: Generation of Solar Spicules, Life Cycle of Solar Spicules, Astro-

physical Jets, Two Fluid Plasma, Time-dependent Baro Clinic Vectors.

I Introduction

Material ejection in the vertical direction from the surfaces of astronomical objects is a

very common phenomenon. Small-scale plasma jets, the spicules, were first observed long

ago (Secchi1887) in the solar atmosphere, and after about a gap of thirty years another

similar but large-scale phenomenon was detected, namely the astrophysical jets (Cur-

tis1918). Later observations revealed that the collimated outflows of gases and plasmas

from young stellar objects (YSOs) in the form of jets posses sizes smaller than a parsec

(10−4 − 1)pc and the material moves in vertical direction with speeds v ≤ (10−3)c where

c is the speed of light. On the other hand, relativistic plasma jets emerging from active

galactic nuclei (AGN) have speeds approaching the speed of light c and are much longer

than the classical jets and have sizes of the order of (106) parsecs. There lie a great variety

of jets in between these two extremes which are commonly observed emerging from dif-

ferent astronomical objects such as normal stars, massive X-ray binary systems, neutron

stars, and massive galactic black holes (quasars) (Jennison and Gupta 1953, Mestel 1961,

Ferrari 1998, Bellan 2018). These ordered structures are apparently created by turbulent

gases and plasmas. These large-scale highly collimated material outflows emerge in the

vertical direction from astrophysical objects with very complex structures of magnetic

fields. The physical mechanism for the generation of large-scale classical plasma jets has

similarities with the small-scale outflows of plasma observed in different regions of the

solar atmosphere.

Vertical plasma jets emerging in the perpendicular direction to the solar disk

can always be observed which have lengths of the order of thousands of kilo meters,

diameters of the order of hundreds of kilo meters and a life time of the order of (5 − 10)

minutes (Priest 1982). These density structures move in an upward direction with speeds

of tens of kilo meters per second. About a million spicules can always be seen at the
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solar disk with small variations in size. So far, there has been no consensus on the

fundamental mechanism for the generation of astrophysical jets at different spatial scales.

Several physical mechanisms can be involved in producing these jetlike flows in different

astronomical environments.

Sun is the closest astronomical object to our home, Earth, and a great variety

of small-scale localized jet-like plasma flows and mass ejections have been detected in the

three regions of its atmosphere; the surface, the chromosphere and the corona (Priest

2014; Woo 1996; De Pontieu et al. 2007a; Aschwanden and Peter 2017; Climchuck and

DeForest 2020). It includes spicules, coronal loops, coronal mass ejections (CMEs), and

the much smaller cylindrical plasma structures; the threads and strands observed within

the coronal loops (Goddard et al., 2017).

During the past several years, a lot of interest has been invoked in the study

of solar spicules, particularly because of the advancement in observational techniques

which led De Pontieu et al. (2007b) to divide the spicules into two categories; one has

been named as Type-I and the other Type-II. Type-I spicules exhibit slower velocities

(10−40)kmS−1 and longer life times (3−10) minutes, while Type-II spicules have larger

velocities (80 − 300)kmS−1 and shorter life times (1 − 3) minutes. In addition to upward

plasma motions, downward flows have also been observed in the transition region (TR)

and lower chromosphere. High-speed downward flows with velocities (60 − 200)kmS−1

occur near the active regions as well as in the quiet Sun (Bose et al. 2021). Thermal

energy flows from the chromosphere to the corona, but only a small fraction of energy

escapes to the corona (Carlsson et al. 2019) and the rest remains trapped within the

chromosphere. Spicules are thin thread-like plasma structures that are believed to be

created in the lower chromosphere and rise up to several thousands of kilo meters in the

corona. After their life time, they either fade out or fall back into the chromosphere (Bose

et al. 2021; Scalisi et al. 2021a).

In order to gain a deeper understanding of the morphology and characteristics of

solar jets, a few physical mechanisms have been proposed. These mechanisms include the

shock waves generated by pressure/velocity pulses (Hollweg 1982; Shibata et al. 1982;

Kuzma et al. 2017), shock waves driven by nonlinear Alfven waves in magnetic flux

tubes (Matsumoto and Shibata 2010), as well as the creation of jets by the magnetic

reconnection (Yokoyama and Shibata 1995; Gonza’lez-Aviles et al. 2018). The reflection
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of Alfven waves has also been considered as one of the possible mechanisms for the

creation of spicules (Salisi et al. 2021b).

Numerical simulations can consider a multitude of physical effects by including

the terms representing radiation, conduction, resistivity, and pressure in the set of plasma

equations to investigate the evolution of jet-like flows. A series of numerical experiments

have been performed using single fluid magnetohydrodynamics (MHD). The role of several

parameters in determining the dynamics of spicules has been studied (Marti’nez-Sykora

et al. 2017; 2020). The 2D simulations provide a clue to the existence of pressure force

within the spicule structure, and the plasma within the boundaries is found to be in

the state of non-equilibrium. The non-uniform internal pressure force and magnetic field

tension counterbalance each other and cause cross-sectional deformation. Regions of high

density and pressure have been given the names of knots by some authors (Dover et al.,

2021). A new phenomenon of nanojets has also been observed recently (Antolin2021).

The creation and dynamical evolution of the spicules have been investigated

through numerical simulations using MHD equations that include the dynamics of neu-

trals (Kuzma et al., 2017). The set of equations used in this simulation reduces to MHD

if neutrals are ignored. The authors have considered several physical mechanisms, such

as gravitational field, ionization, recombination, collisions, and pressure gradient forces.

The current-free plasma is considered, and in equilibrium the pressure gradient balances

the gravity. Then a time-dependent perturbation is introduced at the bottom of the

plasma boundary to investigate the temporal evolution of densities and pressures. The

results indicate a rapid increase in the plasma density with height which is not in com-

plete agreement with the observations. However, several other features indicated by the

simulations match with the observations. The MHD simulations (Kuzma et al. 2017;

Dover et al. 2021) predict the role of pressure gradients in the formation and evolution

of spicules, and they do not rely only on magnetic reconnection mechanism. The termi-

nology used in the work of Kuzma et al. (2017) is different from the one used commonly

by plasma physicists. The two-fluid plasma equations involve the conservation equations

of the mass and momentum of both electrons and ions in plasma physics. But the so-

called two-fluid equations in the work of these authors are basically MHD equations that

involve neutral dynamics as well. Anyway, this is just a matter of terminology and needs

clarification.
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Long ago (Biermann 1950), it was proposed that the electron baro clinic vec-

tor (∇ne × ∇Te) generates the seed magnetic fields in stars. Ions were assumed to be

static (mi → ∞) and electrons were considered to be inertialess (me → 0) in this the-

oretical model. The spatial variations of density and temperature were assumed to be

constant in time and the electron Lorentz force term was also ignored. The large magnetic

fields observed in classical laser plasma experiments of the order of mega Gauss (106G)

(Brueckner and Jorna1974) were explained on the basis of the Biermann battery mecha-

nism. Keeping in view the intermediate temporal and spatial scales for the case mi → ∞

and me → 0, a theoretical model named electron magnetohydrodynamics (EMHD) was

presented (Kingssep1990; Bol’shov1991). This mechanism was also used to estimate seed

fields in galaxies of the order of micro Gauss (10−6G) (Lazarian1992; Widrow2002).

It was suggested that the ions cannot remain stationary during a physical plasma

process in which electrons are assumed to be inertia-less (Saleem1996; Saleem1999).

Therefore, the Biermann mechanism was modified by including ion dynamics and plasma

flows to generate the coupled seed magnetic field B and plasma vorticity (∇ × vi). The

2D exact solutions of the two fluid plasma equations were found assuming gradients of

density and temperatures to be constant with respect to time using Cartesian geometry

(Saleem 2007; Saleem 2010). Using cylindrical coordinates, it has also been shown that

plasma flows in the perpendicular direction to the surface are generated if the density

attains locally the spatial profile like the Bessel function of order one in the radial direc-

tion and the temperatures vary linearly along the axial direction.40 But in this case, the

jet-like flows are produced in both directions; upward and downward.

Recently, 3D exact solutions of two fluid plasma, MHD and neutral fluid equa-

tions have been presented in Cartesian geometry (Saleem and Saleem 2022) assuming the

gradients of density and temperatures to be constant with respect to time. The authors

also presented a model for the generation of jet-like flows. They have shown that plasma

flow in the upward direction is produced when the density has a spatial dependence on

the surface coordinates n = n(x, y) in a local region and the electron and ion tempera-

tures have positive gradients along the vertical direction, that is, ∇Tj =| dTi

dz
| ẑ. Both

the density and temperature profiles have been assumed to be time-independent. This

exact analytical solution of plasma equations has been applied to explain the generation

of spicules by the plasma baro clinic vectors ∇n × ∇Tj. The length of the spicule is
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divided into plasma slabs of each thickness h, and these slabs move upward one after the

other due to the vertical acceleration generated by the density and temperature gradients

at the bottom of the spicule. The slab at the bottom of the spicule can be divided into

four quadrants in the xy plane. The density is assumed to be maximum at the center.

Considering only one out of four quadrants, it has been shown that a slab of a small height

at the bottom of the structure will be lifted upward with the acceleration greater than

the solar gravity constant. When the slab enters into upper regions, either the density

gradient or temperature gradient vanishes and its speed becomes constant in agreement

with the observations. In that solution, the density profile and temperature gradients

have been assumed to be time independent. The vorticity and magnetic field turn out

to be linearly growing with time by the time-independent baro clinic vectors of electrons

and ions.

If constant temperature gradients are given as is the case in different regions

of the solar atmosphere, then wherever a density hump or dip is created locally as a

function of (x, y), it must be time-dependent at least at initial evolution stage of the

ordered plasma structure; the plasma jet. A more realistic solution of plasma equations

must have a time-dependent density n = n(x, y, t) to produce upward flows locally in the

presence of constant temperature gradients along the z axis.

Our task is two fold; first we find the exact analytical solution of two fluid

plasma equations with time-dependent density n = n(x, y, t) and constant gradients

of temperatures along the positive z-axis Tj = Tj(z). This solution can also be used

to investigate the generation of large-scale plasma jets emerging from YSOs and other

astronomical objects in the classical limit. Second, we apply the above mentioned 2D

solution of two fluid plasma equations to explain the evolution of spicules and their life

cycle. The birth and death of spicules are explained by considering three stages in three

different regions; lower chromosphere, transition region (TR), and lower corona. The

2D time-dependent density structure presented in this work will be used in the evolution

stage of the spicule in the lower chromosphere. Then the 2D solution (Saleem and Saleem

2022) obtained for time-independent density will be employed to elaborate the dynamics

of the spicule in TR and corona.
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II Theoretical Model for Jet Formation

Two fluid classical equations of momentum conservation for electrons and ions in the

presence of constant gravitational acceleration g are written, respectively, as,

mene(∂t + ve · ∇)ve = −ene(E + 1
c
ve × B) − ∇pe +meneg (1)

and

mini(∂t + vi · ∇)vi = eni(E + 1
c
vi × B) − ∇pi +minig (2)

Since spicules have strong ambient magnetic field created by solar plasma dynamics,

therefore we add a unidirectional constant magnetic field B0 = B0ẑ to the weak magnetic

field generated by the baro clinic vectors B(x, y, t) = B̃ and write the total field within

the structures BT as,

BT = B(x, y, t) + B0 (3)

Both electrons and ions are assumed to obey the ideal gas law i.e.pj = njTj where

subscript j = (e, i) denotes electrons and ions. It is assumed that in the presence of

constant temperature gradients along B0, the density hump is created within a local

region of the chromosphere and accelerates upward due to the force of the baro clinic

vectors ∇n × ∇Tj. The quasineutral plasma ne ≃ ni = n(x, y, t) is in a state of non-

equilibrium i.e. Te ̸= Ti. The continuity equations require a source term S(x, y, t), and

they can be written for jth species in the following form,

∂tn+ ∇ · (nvj) = S(x, y, t) (4)

Since the current density is j = en(vi−ve), therefore Amperes’ law gives electron velocity

in terms of ions velocity,

ve = vi − c

4πe(∇ × B
n

) (5)

The equations of motion of electrons and ions for longitudinally uniform flow ∇ · vj = 0

take the form of following two coupled equations, respectively,

∂tB = ∇ × (vi × B) + ∇ × (vi × B0) − ( c

4πne){∇ × [(∇ × B) × B]} (6)
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−( c

4πne){∇ × [(∇ × B) × B0]} + c

4πne{∇ψ × [(∇ × B) × B]}

+ c

4πne{∇ψ × [(∇ × B) × B0]} − c

e
(∇ψ × ∇Te)

and

a∂tB + ∂t(∇ × vi) = ∇ × [vi × (∇ × vi)] + a∇ × (vi × B) (7)

+a∇ × (vi × B0) + 1
mi

(∇ψ × ∇Ti)

where a = e
mic

, ψ = ln n̄, n̄ = n
N0

, N0 is arbitrary constant density, and pj = njTj has

been used. If following two conditions also hold,

∇ψ · vi = 0 (8)

and

∇ψ · (∇ × B) = 0 (9)

then all nonlinear and complicated terms of Eqs. (6) and (7) vanish and they reduce to

two simpler equations (Saleem2010; Saleem2021; Saleem and Saleem2022), respectively,

given as,

∂tB = −c

e
(∇ψ × ∇Te) (10)

and
e

mic
∂tB + ∂t(∇ × vi) = 1

mi

(∇ψ × ∇Ti) (11)

We assume ∇ψ is not parallel to ∇Tj. Then (10) and (11) give an expression for the

generation of ions vorticity by baro clinic vectors,

∂t(∇ × vi) = 1
mi

∇ψ × (∇Te + ∇Ti) (12)

If ψ = ψ(x, y, t) and Tj = Tj(z) then the above relation can be expressed as,

∂t(∂yviz,−∂xviz, 0) = a0(∂yψ,−∂xψ, 0) (13)

where a0 = (T
′
0e+T ′

0i

mi
). Observations reveal that constant gradients of temperatures in the

axial direction prevail in the chromosphere and in the transition layer. Therefore, the
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temperatures are assumed to follow the spatial profiles given by,

Tj = T ′
0jz + T00j (14)

where T ′
0j = dTj

dz
and T00j are constants. Density is assumed to be the spatial function of

the coordinates (x, y) and time, therefore ψ = ψ(x, y, t). Equation (13) is satisfied if the

ions have only vertical velocity, viz,

vi = viz(x, y, t)ẑ (15)

Equations (10) and (11) imply that the baroclinic vectors of ions and electrons are parallel

to each other and Eq. (13) indicates that the spatial profile of viz is similar to ψ, therefore,

B is also parallel to the ion vorticity ∇ × vi. Hence, we assume,

B = b0(∇ × vi) (16)

where b0 is constant. The form of viz given by Eq. (15) yields,

∇ × [vi × (∇ × vi)] = 0 (17)

Equations (16) and (17) imply,

∇ × (vi × B) = 0 (18)

Equation (16) gives,

∇ × B = −b0∇2vi (19)

If

∇2vi = ηvi (20)

where η is constant, then both generated fields B and vi are curls of each other. Equations

(13) and (20) demand that the spatial profile of ψ must satisfy the condition,

∇2ψ = ηψ (21)
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III Analytical Solutions

The general solutions of Eqs. (10), (11) and (12) depend on the form of ψ in the presence

of given spatial gradients of temperatures along the z direction by Eq. (14). Next, we

will try to find an exact analytical solution of two fluid equations with a time-dependent

density function ψ = ψ(x, y, t), and then we will obtain the previous solution for a time-

independent density function ψ = ψ(x, y) as a limit of the present solution. Both of these

solutions will be applicable to the complete life cycle of spicules at different stages.

III.I The ψ as Step Function in Time

Let us choose the form of density function ψ as follows,

ψ(x, y, t) = F (x, y)f(t) (22)

with

F (x, y) = (A1e
−(µx+νy) + A2e

(µx−νy)) (23)

where A1, µ, ν, A2 are constants. We obtain the following from Eq. (23),

∇2F = ηF (24)

where η = (µ2 + ν2) and it is in agreement with Eq. (21). Let,

f(t) = H(t) (25)

where H(t) is the step function with respect to time and hence at t = 0, we find H(t) = 1

which gives,

ψ(x, y, 0) = F (x, y) (26)

Thus we have,

ψ(x, y, t) = F (x, y)H(t) (27)

where 0 ≤ t ≤ τev, and τev is the evolution (or birth) time of the density hump. We

choose a rectangle within the chromosphere with −xm ≤ x ≤ xm and −ym ≤ x ≤ ym.

Keeping in view the observed order of the spatial dimensions of the spicules, we choose
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xm = (2 × 107)cm and ym = (3 × 107)cm and assume µxm = (0.5) and νym = (0.7).

The density function F is maximum at the center (0, 0) and decreases smoothly within

the rectangular area. Let density be four times the constant density at the center at

initial time t = 0 i.e. n(0, 0, 0) = 4N0 = F (0, 0). We assume A2 = (0.1)A1, and

using the expression of F , we can evaluate A1 which turns out to be A1 = (1.26) for

F (0, 0) = ln 4 = (1.386) which gives F (xm, ym) = (0.388). Equation (13) yields,

∂tviz(x, y, t) = a0ψ = a0F (x, y)H(t) (28)

Integration of this equation gives the ions vertical flow as a ramp function of time,

viz(x, y, t) = a0F (x, y)R(t) (29)

for 0 < t ≤ τev where R(t) is ramp function.. Integration of Eq. (10) gives the magnetic

field created by baro clinic vectors as a ramp function of time,

B(x, y, t) = −cT ′
0e
e

(∂yF,−∂xF, 0)R(t) (30)

Since µ and ν are very small on astrophysical scales, including the solar at-

mosphere, the seed magnetic field generated by the baro clinic vectors is very small, in

general.

Now we want to check whether the assumed step function in time for ψ satisfies

the continuity equations of electrons and ions or not. If the source is assumed to be,

S(x, y, t) = nF (x, y)δ(t) (31)

then continuity equations become,

∂tψ = F (x, y)δ(t) (32)

Since d
dt
H(t) = δ(t), therefore integration of above equation yields Eq. (27) and the form

chosen for source S in Eq. (31) remains consistent with the initial assumptions.
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Fig. 1: The function used to plot the above figure is H(x+y)eψ0e(−µx−νy)+H(−x+y)eψ0e(µx−νy)+
H(x − y)eψ0e(−µx+νy) + H(−x − y)eψ0e(µx+νy) where H(x) is the Heaviside function. The above
form of the function allows us to plot the solution in all four quadrants. It represents the density
profile in xy-plane in the simpler case corresponding to A2 = 0 in Eq. (23).
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III.II The ψ as Exponential Function in Time

It may be mentioned here that we can also get a mathematically consistent solution by

considering,

f(t) = eγt (33)

where γ is a constant. Then we obtain,

B(x, y, t) = −cT ′
0e

eγ
(∂yF,−∂xF, 0)(eγt − 1) (34)

The jet-like flow vi gets the following form,

vi = a0

γ
F (x, y, t)(eγt − 1)ẑ (35)

The source term can be defined as,

S(x, y, t) == γn(x, y, t)(eγtψ0F (x, y, t)) = γnψ (36)

The continuity equations reduce to,

∂tψ = γψ (37)

At t = 0, we obtain,

ψ(x, y, 0) = F (x, y) (38)

Since density becomes double exponential function of time, therefore the parameter γ

must be chosen very carefully. Note that in this case, the density n(x, y, t) increases very

rapidly with time and this solution can be valid only over an extremely short duration

of time. Thus, the choice of step function form of ψ during evolution time seems to be

physical, and we will use it to investigate the birth and death of spicules in the next

section.
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III.III The ψ Constant in Time

If evolution process of the spicule is ignored, then density function ψ can assumed to be

time-independent and Eq. (22) for f(t) = 1 becomes,

ψ(x, y) = F (x, y) (39)

Interesting point is that the created fields vi and B̃ turn out to be the linear functions

of time and Eqs. (29) and (30) remain valid. In this case, the density becomes constant

over time, and the source function vanishes, i.e. S = 0.

IV Creation and Life Cycle of Spicules

In the solar atmosphere, the temperature first decreases from the surface value T ≃

6600 K to T ≃ (4300) K at an altitude of about 500 km from the surface. Above this

altitude, the temperature increases from T ≃ (4300) K to 104 K in the upper chromo-

sphere and then after passing through the thin transition region (TR), the temperature

increases rapidly to T ≃ 8 × 105 K (Slemzin2014). Above the transition region lies the

lower corona, where the electron temperature reaches the value of T ≃ 106 K and its

gradient becomes very small. The temperature of ions is about two times higher than

that of electrons.

We divide the spicule generation process into three different stages keeping in

view the temperature variation in the above-mentioned regions. The first stage is its

evolution in the lower chromosphere, where the density hump in the (x, y) coordinates

is created due to the plasma dynamics in the presence of constant vertical temperature

gradients. The vector force ∇ψ×(∇Te+∇Ti), produces the ion vorticity that is associated

with their vertical flow. We assume that the spicule evolves in a time denoted by τev in this

region and leaves after attaining a certain upward velocity. Then it crosses the transition

region in a shorter time τTR, because the acceleration produced in TR is greater due

to the larger temperature gradients there. However, we assume, for simpler physical

picture, that the process of the formation of density structure attains its completion in

the lower chromosphere and does not change with time in TR. After gaining a larger

velocity in TR, it enters the corona with the final velocity gained in TR that remains
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Fig. 2: Schematic diagram of density hump and its velocity in three different regions of solar
atmosphere.

almost constant in the lower corona because the upward acceleration is negligible there

compared to the lower regions since ∇Tj → 0. The smaller downward solar gravitational

deceleration (−g⊙) plays a role in limiting the height of the structure. The final velocity

of the density structure becomes zero in the corona after a time τl and this is the life

time of the spicule.

IV.I Evolution in Chromosphere

Let us estimate the magnitudes of the acceleration and velocity of the density hump

during its evolution in the chromosphere for t = 0 → τev. Let T0e(z1) = 4 × 103 K be the

electron temperature in the lower chromosphere and T0e(z2) = 2 × 104 K be the electron

temperature in the upper chromosphere. We choose the thickness of density structure in

chromosphere hch = z2 −z1 = 103 km and estimate the approximate electron temperature
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gradient as,

T ′
0e ≃ T0e(z2) − T0e(z1)

h
= (2.2) × 10−20 K. (40)

Assuming T0i ≃ 1.5 T0e for hydrogen plasma mi = 1.67 × 10−24 gm, we obtain,

a0 = T ′
0i + T ′

0e
mi

= (3.29) × 104cm/S2 (41)

Since (0.388) ≤ F (x, y) ≤ (1.386) within the the density structure, we consider | F (x, y) |≃

1 and hence,

(viz)ev ≃ (a0 − g⊙)τev = aτev (42)

where g⊙ = (2.74) × 104 cm/s2 is the solar gravitational acceleration in downward direc-

tion and it gives a ≃ (0.55)×104cm/S2. We assume τev = (10) S and it gives the velocity

gained by the density structure of the order of,

(viz)ev = (5.5) × 104cm/S (43)

IV.II Velocity Gain in the Transition Region

After creation, the density structure enters into the transition region (TR) where its

upward acceleration is enhanced due to larger temperature gradients there. If the electron

temperature is assumed to increase from T0e(z2) = 2 × 104 K to T0e(z3) = 8 × 105 K

at the point z3 (top of TR) while the thickness of this layer is 500 km, the gradient of

electron temperature turns out to be T ′
0e = (2.15) × 10−18 ergs/cm which gives (a)TR =

32 × 105 cm/S2. We assume that the form of the density function does not change

with time in this region. Since g⊙ << (a)TR, therefore, the effect of solar gravitational

attraction is neglected. The velocity gained in this region by density structure F (x, y) is

estimated using the basic relation of classical mechanics,

(viz)TR = (viz)ev + [(a)TR]τTR (44)

where τTR is the time spent by the spicule density structure in TR and (viz)ev is the initial

velocity when it enters into TR from chromosphere. Its final velocity in TR becomes

(viz)TR = (128) km/s.
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IV.III Rise and Fall of the Spicule in the Corona

In corona, the upward acceleration vanishes because ∇Tj → 0 and the density structure

enters into this region with the constant velocity gained in TR i.e. (viz)TR. Solar gravity

acts in downward direction to reduce its vertical speed. The final velocity in corona ,say

(viz)cf , becomes zero after the life time of spicule τl spent in corona which is much longer

than its evolution time and the time spent in TR. Following relation holds in corona,

(viz)cf = (viz)TR − g⊙τl = 0. (45)

In this region, the downward solar acceleration does not allow the spicule to move con-

tinuously in the vertical direction. In fact, its velocity decreases very slowly here because

g⊙ is small. The above relation gives τl ≃ (7.78) minutes. From this we can compute

the maximum height H of the spicule H ≃ (2.98) × 104 km. Both the lifetime τl and the

height H are in the range of the observed values.

Now, we explain why we used the time spent by the spicule center in the TR

τTR = 4 S. The vertical distance covered by the center point of the spicule with a large

upward acceleration is LTR = 500 km. Then, the following relation can be used to

estimate approximately the time spent by the density point in the TR,

(500)km ≃ [(viz)TR]τTR + [12(a0)TR]τ 2
TR. (46)

We have already estimated the large upward acceleration in this region (a)TR = (32)km/s2,

and initial velocity is small, therefore we ignore the first term on right hand side of above

equation and use,

500 km ≃ [12(a)TR]τ 2
TR, (47)

which gives τTR ≃ (8)S. Since (viz)TR ≃ (128)km/s is the maximum value of the

velocity gained in TR and this does not remain the same throughout this region and

therefore we have used τTR = 4S. Density structures are created one after the other in

the chromosphere until the velocity of the first such structure in the corona becomes zero.

At this stage, the formation of the density lump at the bottom of the spicule stops.
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Fig. 3: Schematic diagram of how the upward velocity of density hump increases slowly in
stage-I, gets larger speed in stage-II and finally decreases to zero in corona after lifetime τl.

V Discussion

Creation process of spicules and their life cycle have been studied by using exact analytical

solutions of two fluid plasma equations in three different regions of the solar atmosphere.

There are two interesting questions related to this phenomena; one is how the density

structure is created in chromosphere with vertical velocity and the other is why this

density structure decays in corona after getting a certain height. The first question is

explained by showing that if a spatial density structure in the xy plane is created in the

chromosphere in the presence of linear variation of electron and ion temperatures along

the z axis, then a thermodynamic force Fth is produced along the vertical direction and

the local density structure moves upward. These structures are created one after the

other in chromosphere and attain a form of a plasma jet; the spicule. Plasma is assumed

to be quasi-neutral ne ≃ ni = n in a state of non-equilibrium Te ̸= Te. The second

question has a simple explanation based on the fact that if the density structure has

constant velocity in corona then the solar gravitation acting in downward direction limits

the height of density profile in vertical direction.
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To understand the mechanism of spicule creation, it is necessary to consider the

development of spatial density profile in a local region of the xy plane within a finite

time. The density function ψ = F (x, y)H(t) decays exponentially in space away from the

origin (0, 0).

The life cycle of the spicule is divided into three stages. In stage I, the spicule

takes birth in the chromosphere where the density function F (x, y) with exponential

decay away from the origin (0, 0) is created with the step function H(t) in t = 0 while

the temperatures vary linearly along the z direction. The upward acceleration becomes

greater than the solar gravitational constant g⊙ < a. The source S(x, y, t) of the density

increase has the form of a delta function δ(t) in time. Ions vorticity (∇ × vi) is created

by the time-dependent baro clinic vectors ∇n × (∇Te + ∇Ti). The generated vorticity

requires the ions to flow in a vertical direction, viz. vi = viz(x, y, t)ẑ. The ion velocity

is related to the flow of electrons through Ampere’s law, and hence the plasma jet-like

flow along the z-axis is generated during a short time of about 10 seconds. In stage II,

the density hump enters the transition region (TR) where the temperature gradients are

large and g⊙ << a. After achieving a high speed during its passage through TR in a

short time span of about 4 seconds, the spicule enters the corona, where the temperature

gradients are vanishingly small, and it moves upwards with almost constant speed. This

is the stage-III of the density structure. The solar gravitational acceleration acting in

opposite direction to its motion reduces its vertical speed to zero after a long time τl,

which is the life time of the spicule.

The density profile in the xy plane is shown in Fig. (1). Figure (2) explains

schematically the three stages of density hump and its upward movement. In the chro-

mosphere, the density structure n = n(x, y) takes birth during a finite time and is pushed

upward. In TR, it gets larger vertical speed, and in corona this speed becomes almost

constant initially and reduces slowly to zero due to the action of downward solar grav-

itational force. The time spent by the density structure in different regions is shown

schematically in Fig. (3). It may be noted that Figs. (2) and (3) represent the behavior

of physical quantities, but are not according to physical scales. The estimate of the time

spent in the corona is the longest time approximately 8 minutes, and the height attained

by the spicule is approximately 30 thousand kilo meters. Both height H and life time τl
depend on the magnitudes of the gradients. By varying the scale lengths of the gradients,
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one can obtain several different sizes of the density structures. This is a general model

which can be applied to investigate several different types of jet-like flows.
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